Microfluidics re-imagined in LEGO-style blocks

January 24, 2017 // By Graham Prophet
A team of Californian researchers has taken the familiar LEGO interlocking plastic block, and used the concept to implement a modular microfluidics system. They believe this may open up new possibilities for microfluidics.

Microfluidics, and the fluidic logic it embodies, has a history that dates back to (at least) the 1960s. When suitably confined, a moving stream of fluid can exhibit behaviour that can mimic the logic operations familiar from the electrical/electronic domain. Each logic function (gate, flip-flop etc0 has an analogue in the fluid domain. Flip-flops and latches, for example, can be reproduced by wall-attachment devices in which a stream of fluid will “stick” to a certain path through a channel until “flipped” to an alternate route.


Once thought of as a potential mechanism for applications such as industrial control (from a time when microelectronics was considered by some as insufficiently robust for difficult environments), the technology has rarey found application outside certain specialised niches. More recently, it has attracted growing attention for use in biomedical applications. It involves fluid manipulation at the microscale, where the fluid is usually set in motion by pressure regulators or syringe pumps.


The researchers reporting this work are from the Department of Biomedical Engineering, University of California, Irvine. They used polydimethylsiloxane (PDMS) – a silicone-based organic polymer – to cast the building blocks of a truly LEGO-like microfluidics platform. They describe the results of their research in the Journal of Micromechanics and Microengineering (JMM).


Co-author Kevin Vittayarukskul said: “A typical microfluidic device is like a piping network, except the pipes have diameters in the submillimeter range. Our modular system, based on the design of LEGO bricks, allows cheaper and simpler construction of such devices compared to the more traditional fabrication methods like 3D printing or photolithography.


“Our blocks are essentially 2x2 LEGO bricks with integrated microfluidic channels, cast from 3D-printed master moulds and actual LEGO parts. We put the modules together on a standard LEGO plate. Like traditional LEGO bricks, they are stackable, and their geometry makes mass production by injection moulding feasible.”


The image above shows a 3-layer microfluidic assembly.