Stanford researchers develop the world’s first peel-and-stick thin-film solar cells

January 08, 2013 // By Julien Happich
Stanford researchers have succeeded in developing what they claim to be the world's first peel-and-stick thin-film solar cells.

Unlike standard thin-film solar cells, peel-and-stick thin-film solar cells do not require any direct fabrication on the final carrier substrate. This is a far more dramatic development than it may initially seem. All the challenges associated with putting solar cells on unconventional materials are avoided with the new process, vastly expanding the potential applications of solar technology.

Thin-film photovoltaic cells are traditionally fixed on rigid silicon and glass substrates, greatly limiting their uses, says Chi Hwan Lee, lead author of the paper and a PhD candidate in mechanical engineering. And while the development of thin-film solar cells promised to inject some flexibility into the technology, explains Xiaolin Zheng, a Stanford assistant professor of mechanical engineering and senior author of the paper, scientists found that use of alternative substrates was problematic in the extreme.

"Nonconventional or 'universal' substrates are difficult to use for photovoltaics because they typically have irregular surfaces and they don't do well with the thermal and chemical processing necessary to produce today's solar cells," Zheng says. "We got around these problems by developing this peel-and-stick process, which gives thin-film solar cells flexibility and attachment potential we've never seen before, and also reduces their general cost and weight." Utilizing the process, researchers attached thin-film solar cells to paper, plastic and window glass, among other materials. "It's significant that we didn't lose any of the original cell efficiency," says Zheng.

The new process involves a unique silicon, silicon dioxide and metal "sandwich." First, a 300-nanometer film of nickel (Ni) is deposited on a silicon/silicon dioxide (Si/SiO2) wafer. Thin-film solar cells are then deposited on the nickel layer utilizing standard fabrication techniques, and covered with a layer of protective polymer. A thermal release tape is then attached to the top of the thin-film solar cells to augment their transfer off of the production wafer and onto a new substrate.

The solar cell is now ready to peel from the wafer. To